
State of the art 1

Abstract— Semantic Web Services seem to bring closer to

the reality the vision of software created on-the-fly and

delivered and paid for as fluid streams of services as

opposed to packaged products. This work introduces the

SWS and presents three of the top approaches intended to

bring the semantics to the web services technologies.

Index Terms— Semantic Web services, WSMO, WSDL-S,

OWL-S

I. INTRODUCTION

oday, the web services present several problems that
semantic web services strive for solving.

The interfaces of the web services nowadays are
designed to enable the communication with a single program
or with the same program.

Commonly it is about web browsers that don’t process the
information they get, but just display it enclosed within HTML
tags.

The web browser knows nothing about the information
between <H1></H1>, but only that this information should be
displayed with a font-size higher.

Many services in the web have the problem that they can’t
be combined. A service can invoke another service only after
big programming efforts (e.g.: parsing the output of the other
service for a given token and applying some scraping
techniques). The fact that almost all web services in the web
have different output and this can vary along the time makes
the integration a short of Sisyphus work.

On one hand we have the different standards that are
developed by different companies to serve different purposes,
which avoid the existence of uniform interfaces.

On the other hand, a web service can’t describe itself to
other programs and therefore, can’t be easily found
(discovered) without the intervention of a human user.

All together should work in the imminent future of the web
services with the support of semantics.

Using web services with standardized interfaces should save
a lot of time and money in the development of web-based
applications. Semantic web services provides Internet with
additional automatisms, which enables that one application
running on the home computer autonomously searches, selects
and invokes web services and even more, combines them to
achieve a higher level functionality.

This is the dream of software agents come true.

Figure 1 [10]

A. What are Semantic Web Services good for?

The goal of the semantic web services is the increase of
automation in following web services processes:

• Automatic discovery of web services: the search and
discovery of web services providing a given
functionality in a Service Registry should be performed
automatically, which is only possible by means of
semantics

• Automatic invocation of web services: here are web
services meant, that consists of several method calls
(non-atomic) (e.g.: buying a CD in internet implies
searching for it, selecting it, adding it to the shopping
cart and paying for it). Without the support of
semantics, this couldn’t be possible

• Automatic composition of web services: should a
service not be able of fulfilling the user requirements,
then a composition of other web services is
automatically created and performed to fulfil these
requirements.

B. Approaches towards the Semantic Web Services

Depending on their starting point of the approach, we
distinguish:

The top-down approach models the web service and its
semantics independently on existing web services
technologies. It takes place in an ontology language targeting
the creation of an optimal web service description language.
By means of the so called “grounding”, where the mapping of
semantic description elements to WSDL elements is specified,
the relationship to the WSDL is established. We will discuss
two prominent top-down approaches: the OWL-S and the
WSMO [11]

Bottom-Up approaches pursue the semantic enrichment of
existent technologies (especially WSDL and BPEL).

Semantic Web Services, State of the art
Juan Bernabé Moreno

 University of Granada, Department of Computer Science and Artificial Intelligence

T

State of the art 2

Therewith, WSDL descriptions are extended with semantic
annotations of ontology concepts.

We will start by the bottom-up approach

II. WSDL-S [12]

The initiative the W3C organization is fostering the most
represents the evolutionary and less ambitious approach, just
because it relies on extending already existing components
with semantic capabilities to overcome their limitations.
The Web Services Definition Language (WSDL) is an
extensible, platform independent XML language for
“describing” services. It provides mainly functional
information about the service: IDL description, access
protocol and deployment details, etc… in general, all of the
functional information needed to programmatically access a
service, contained within a machine-readable format.
WSDL does not include QoS, Taxonomies or Business
information.

To put it simple, WSDL is a component definition language
for Web service component

1) WSDL benefiting from semantics

Let’s figure out the potential of adding semantic capabilities
to the WSDL, referred to the web service life-cycle:

During development, the service provider can explicate the
intended semantics by annotating the appropriate parts of the
Web service with concepts from a richer semantic model.

During discovery, the service requestor can describe the
service requirements using terms from the semantic model.
Reasoning techniques can be used to find the semantic
similarity between the service description and the request.

During composition, the functional aspect of the annotations
can be used to aggregate the functionality of multiple services
to create useful service compositions. More importantly,
semantics can make it possible to specify mappings between
data exchanged through XML-based SOAP messages, which
would be extremely difficult to do with syntactic
representation offered by the current standards (one of the core
limitations of “syntactical” WSDL)

During invocation, mappings can be used for data
transformations. Therefore, once represented, semantics can be
leveraged by tools to automate service discovery, mediation,
composition and monitoring.

WSDL-S aims at augmenting the expressivity of WSDL
with semantics to describe the functional aspects of a web
service.

Figure 2

The Figure 2 shows the semantic publication steps, starting

by the details extraction from WSDL, their annotation using
ontologies and the publication of these annotations in UDDI,
and the steps of the semantic discovery, starting by the
construction of the service requirements template, the
annotation of the template using ontologies and the service
discovery based of template annotations.

2) Considerations adding semantics to WSDL

There are some core aspects to be taken into account when
adding semantics to the WSDL

WS standards are becoming the preferred technology for
application integration. Therefore, WSDL-S relies on the idea
that any approach to adding semantics to Web Services should
be specified in an upwardly compatible manner so as to not
disrupt the existing install-base of Web Services.

Whatever mechanism chosen to add semantics to the WSDL
should be independent of the semantic representation
language. There are a number of potential languages for
representing semantics such as OWL [OWL], WSMO
[WSMO], and UML [UML]. Each language offers different
levels of semantic expressivity and developer support. But
tying the Web services standards to a particular semantic
representation language would result into a lack of flexibility.
Moreover, the mechanism should allow the association of
multiple annotations written in different semantic
representation languages, because service providers may
choose to annotate their services in multiple semantic
representation languages to be discovered by multiple
discovery engines.
 Another characteristic the annotation mechanism should
have is the support of data types that are described in an XML
schema-way. A common practice in Web services-based
integration is to reuse interfaces that are described in XML.
We believe that the semantic annotation of service inputs and
outputs should support the annotation of XML schemas. An
approach that does not address XML schema-based types will
not be able exploit exiting assets or allow the gradual upgrade
of deployed WSDL documents to include semantics.

The support for rich mapping mechanisms between Web
Service schema types and ontologies is also a critical success
factor. Provided the importance of annotating XML schemas
in Web service descriptions, attention should be given to the
problem of how to map XML schema complex types to

State of the art 3

ontological concepts. For example, if the domain model is
represented in OWL, the mapping between WSDL XSD
elements and OWL concepts can be represented in any
language of user’s choice such as: RDF, OWL, XSLT, XQuery
or any other arbitrary language as long as the chosen language
is fully qualified with its own namespace.

3) What is WSDL-S?

Offer an evolutionary and compatible upgrade of existing
Web services standards.

WSDL-S externalizes the semantic domain models, due to
its ontology representation languages independency. WSDL-S
allows for reusing existing domain models and the annotation
using multiple ontologies (from the same or from different
domains)

The semantic annotations are done by means of two entities:
Annotating message types (XSD complex types and

elements)

• extension attribute : modelReference
(semantic association)

• extension attribute : schemaMapping
(schema/data mapping)

Annotating operations

• extension elements : precondition and effect
(child elements of the operation element)

• extension attribute : category (on the interface
element)

• extension attribute : modelreference (action)
(on operation element)

Sample
…………

<xs:element name= "processPurchaseOrderResponse"

 type="xs:string

wssem:modelReference="POOntology#OrderConfirmation"/>

</xs:schema>

</types>

<interface name="PurchaseOrder">

<wssem:category name= “Electronics”

taxonomyURI=http://www.naics.com/ taxonomyCode=”443112” />

<operation name="processPurchaseOrder” pattern=wsdl:in-out

 modelReference = "rosetta:#RequestQuote" >

<input messageLabel = ”processPurchaseOrderRequest"

 element="tns:processPurchaseOrderRequest"/>

<output messageLabel ="processPurchaseOrderResponse"

 element="processPurchaseOrderResponse"/>

<!—Precondition and effect are added as extensible elements on an

operation>

<wssem:precondition name="ExistingAcctPrecond"

 wssem:modelReference="POOntology#AccountExists">

<wssem:effect name="ItemReservedEffect"

 wssem:modelReference="POOntology#ItemReserved"/>

</operation>

</interface>

Following annotation elements have been used in the example:

• extension element : Precondition: A set of assertions that
must be satisfied before a Web service operation can be

invoked (“must have an existing account with this
company” or “only US customers can be served”)

• extension element : Effect: defines the state of the
world/information model after invoking an operation
(“item shipped to mailing address”, or “the credit card
account will be debited”)

• extension attribute : Category: models a service category
on a WSDL interface element (category = “Electronics”
Code = “naics:443112”)

• extension element : Action annotated with a functional
ontology concept.(action = “Rosetta:RequestQuote”)

4) Why WSDL-S?

This approach is just the natural evolution of the existing
well-consolidated WSDL dotted with more expressivity by
employing concepts analogous to those in OWL-S.

Its key success factors are:

• Ease in adoption: as this approach is simple, light-
weight and upwardly compatible with the existing
WSDL standard

• Semantic representation language independency,
which allows for the re-usage of domain models, the
flexibility of modeling language choice and the
annotation with multiple ontologies

• Ease in tool upgrades (e.g. wsif / axis invocation)

Even other more revolutionary approaches to the semantic
web services are pursued, leveraging the existing WSDL and
XML schemas for business documents and the set of tools to
exploit them is and will be critical. WSDL-S already
positioned itself as the best candidate to bridge the gap
between those revolutionary approach and the

III. WEB SERVICES MODELING ONTOLOGY [2]

Web Service Modeling Ontology is a conceptual model for
the web services description, in other words, one semantic web
services core elements ontology

Similarly to other initiatives, the ultimate goal of WSMO is
enabling the automatic service discovery and their execution,
as well as paving the way to a holistic yet simple integration
solution. This will allow for the automatic cooperation of non-
dependant services to achieve a common functionality at a
higher level.

A. The WSMO Working group

The WSMO was founded to achieve a mission consisting of
the following 4 points:

• Strengthening European Research and Industry in
Semantic Web and Semantic Web Services

• Working towards international standardization
together with US-based DAML program

• Promoting research results to industry and academia
through joint dissemination

State of the art 4

• Strengthening world-wide research and
standardization in Semantic Web and Semantic Web
Services field

The research efforts are organized in three core subprojects, as
shown in Figure 3:

Figure 3

WSMX is an execution environment that enables discovery,

selection, mediation, invocation and interoperation of SWSs.
The development process for WSMX includes establishing a
conceptual model, defining its execution semantics,
developing the architecture of the system, designing the
software and building a working implementation of the system.
The research results for WSMX provide guidelines and
justification for a general SWS architecture

Figure 4

WSML [4] , the Web Service Modeling Language is a

language for the specification of ontologies and different
aspects of Web services. In this respect WSML provides a
syntax and semantics for the WSMO. WSML uses well-known
logical formalisms in order to enable the description of various
aspects related to Semantic Web Services.

Figure 5

The Figure 5 depicts the five variants of WSDL and their
relationships:

WSML-Core: this language is defined by the intersection of
Description Logic and Horn Logic, based on Description
Logic Programs. It has the least expressive power of all the
languages of the WSML family and therefore has the most
preferable computational characteristics. WSML-Core
provides support for datatypes and datatype predicates

WSML-DL is an extension of WSML-Core which fully
captures the Description Logic SHIQ(D), which captures a
major part of the (DL species of the) Web Ontology Language
OWL

WSML-Flight is an extension of WSML-Core with such
features as meta-modeling, constraints and nonmonotonic
negation.

WSML-Rule is an extension of WSML-Flight in the
direction of Logic Programming. The language captures
several extensions such as the use of function symbols and
unsafe rules.

WSML-Full unifies WSML-DL and WSML-Rule under a
First-Order umbrella with extensions to support the
nonmonotonic negation of WSML-Rule. It is yet to be
investigated which kind of formalisms are required to be
achieved.

B. The WSMO in depth

In Figure 6 we can see the high level notions the WSMO is
founded upon:

Figure 6

We will focus first on the Web services themselves and
specifically on the way they are described.

WSMO separates the functional description of the web
service or capability and their usage of the web service, which

State of the art 5

requires the specification of their interfaces. There are two
kinds of interfaces: choreography –when the ws is invoked- or
orchestration –when the ws invokes other web services to
perform its goals-, as we will see in further sections

1) Web services specification in a WSMO manner

The web services are specified by providing following
elements:

• Non functional properties (conventional web service is
added non-functional properties like the complete
description of its elements, indicators about the quality
of service (QoS), etc)

• Imported Ontologies

• Used mediators

– OO Mediator: importing ontologies with
mismatch resolution

– WG Mediator: link to a Goal wherefore
service is not usable a priori

• Pre-conditions
What a web service expects in order to be able to
provide its service. They define conditions over the
input.

• Assumptions
 Conditions on the state of the world that has to hold
before the Web Service can be executed

• Post-conditions
Describes the result of the Web Service in relation to
the input, and conditions on it

• Effects

Conditions on the state of the world that hold after
execution of the Web Service (i.e. changes in the state
of the world)

Let’s see one example:

namespace {_"http://example.org/CreditCardCharging#",
dc _"http://purl.org/dc/elements/1.1#",
po _"http://example.org/purchaseOntology#",
foaf _"http://xmlns.com/foaf/0.1/",
wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
ccci
_"http://www.example.org/CreditCardChargingInterfaceOn
tology#"}

webService _"http://example.org/CreditCardChargingWebService"

nonFunctionalProperties

dc:title hasValue „Credit Card Charging Web
Service"

dc:creator hasValue „Association of all Credit
Card Companies"

dc:description hasValue "web service for
charging a credit card with an given amount and
creating a remittance order for a given recipient"

dc:publisher hasValue " Association of all Credit
Card Companies"

dc:date hasValue "2006-01-12"

dc:type hasValue
<<http://www.wsmo.org/2004/d2/#webservice>>

dc:format hasValue "text/html"

dc:language hasValue "en-us"

version hasValue "$Revision: 1.5 $"

endNonFunctionalProperties

importsOntology _"http://example.org/purchaseOntology"

capability CreditCardChargingCapability

interface CreditCardChargingInterface

importsOntology
_http://www.example.org/CreditCardChargingInterfaceOnt
ology

choreography CreditCardChargingChoreography

orchestration CreditCardChargingOrchestration

2) Choreography and Orchestration

These concepts are intended to enable the automatic service
execution

Choreography takes up how the user interacts with the
service, to make use of its functionality

Orchestration handles how the functionality of the services
is achieved by means of the aggregation of other web services.

Figure 7 explains better how orchestration and
choreography take place.

3) Goals specification

WSMO predicates the ontological de-coupling of Requester
and Provider, actually derived from task / problem solving
methods/domain model.

The requests are therewith structured and reusable Requests
may in principle not be satisfiable

Goals are linked to web services by means of ontological
relationships and mediators to resolve the conceptual
heterogeneity

To specify a goal, following elements are typically used:

• Non functional properties

• Used mediators:

• A goal can import ontologies using ontology
mediators.

• A goal may be defined by reusing an already existing
goal. This is achieved by using goal mediators.

• Post-conditions describe the state of the information
space that is desired.

• Effects: describe the state of the world that is desired.

Figure 7

State of the art 6

4) Mediation

In words of Christoph Bussler and Dieter Fensel, WSMF
strictly enforces safe sex between components. They are never
allowed to touch each other without a mediator in-between.

The Figure 8 provides a clear sample where mediation is
required: Ontology 1 and Ontology 2 specify “address” in
different ways; the application of a mediator will ensure that
these concepts are understood uniformly.

The heterogeneity (or better said the lack of homogeneity) is
the reason why for each invested dollar in programming,
another 5 to 9 dollars are invested in integration [6].
Continuous mismatches at structural, semantic/conceptual
level justify these economic efforts when the integration
becomes a business requirement.
 Thus, mediators are in plain English, components that
resolve mismatches. Moreover, they allow for the declarative
description of any arbitrary web service.
 The types of mediation within Semantic Web Services are
related to:

• Heterogeneous Data Sources

• Heterogeneous Communication patterns (protocol)

• Heterogeneous business processes

Figure 8

According to the entities they connect, mediators can be

classified as (see Figure 9):

• OO Mediators: importing ontologies with
heterogeneity resolution

• GG Mediator: goal definition by reusing an already
existing goal allows definition of Goal Ontologies

• WG Mediator connects web services and goals,

which means that the web service/s is/are used to

achieve the goal

• WW Mediator connect two web services.

Figure 9

 According to their function, they can be sub-classified in
refiners and bridge:

Figure 10

 To explain what a goal refinement is about, we provide
following example (see Figure 11)

Figure 11

IV. OWL-S

The Web Ontology Language for Services (OWL-S) [7] is
created upon the DAML-S, which is based on DAML+OIL
(currently in Version 1.1).

The goal of the developers of OWL-S is the connection of
Web Services and the semantic web to end up providing the
Semantic web services.

To achieve this goal, OWL-S should provide following
functionality:

– Automatic Web Service Discovery
– Automatic Web Service Invocation by a client or software

agent. The execution is seen as a sequence of functional
invocations and requires that the Software-Agent recognizes
the interface semantic of the to-be-called WS

– Automatic Web Service composition and interoperation:
given a request, the selection, composition and cooperation of
web services to fulfill this request.

To provide the mentioned functionality, OWL-S is based on
technologies already in place for Web Services (like SOAP
and WSDL), adding types and classes to them, with the
purpose of describing the web services functionality in a

State of the art 7

machine understable way (covering not only the control and
data flow, but also preconditions and effects)

Semantic Web Services (SWS) in OWL-S are described by
four ontologies: “Service“, ”ServiceProfile“, ”ServiceModel“
and ”ServiceGrounding“

Figure 12

The motivation for structuring the Service-Ontology like
shown in the Figure 12 resides in the need for describing three
core characteristics of a Web Service:

• Which functionality is provided by the service?

• How is the serviced used?

• Which effects does the service have or how the user
interacts with the service?

A. Service Ontology

For each service there is one ontology of the Service class
describing the service.

One instance of the Service class supports a service
grounding, is described by a service model and presents a
service profile.

B. Service Profile Ontology

This ontology takes up the publishing of the service and
describes at a certain level of abstraction the functionality the
service is intended to provide. That enables that an agent
decides if the service fulfills the required functionality in the
required way (QoS, etc).

The set of properties to be specified per Web service can be
separate into two groups:

• Non functional: not relevant for the semantic
description of the service but crucial for its usage

• Functional: in/out parameters (“hasnput”,
“hasoutput”), preconditions and effects.

Figure 13

C. Service Model Ontology

This ontology provides a description on how the service is to
be used and how it works. To do that, the web service control
flow is modeled as a process. By means of inputs, outputs,
preconditions and effects the description on how the web
service tasks are carried out is given. A process can be seen as
the specification of the way a client should interact with the
service.

The web service flow consists of atomic processes, simple
processes and composite processes.

An atomic process is just a process that doesn’t consist of
sub-processes and can be bound to a WSDL operation and
therefore can be invoked directly.

A simple process is just a layer of abstraction of atomic
processes and has also in/output parameters, preconditions and
effects. The only difference is that they are not bound with the
grounding (although it is assumed, that simple processes can
be executed)

Composite processes consist of simple and atomic processes
whose flow is defined by using following operators: sequence,
split and join, if-then-else and choice, any-order, repeat-while
and repeat-until (see Figure 14)

D. Service Grounding

This ontology describes how the service is accessed and how
the interaction with the services should happen.
Communication protocols, messaging formats, serialization,
transport, port number and location belong to the service
grounding. The main task of this ontology consists of the
serializing of data types and parameters of OWL-S and the
packing of them into a concrete message, as well as enabling
the communication between components.

It is done by means of WSDL as shown in Figure 15

Figure 14

State of the art 8

Figure 15

V. COMPARISON OF WSMO AND OWL-S

Even if both methods rely on the introduction of ontologies
to enable the semantic web services, they radically differ in
several aspects

OWL-S assists the developer by means of templates but at
the same time, it brings some constraints that are not present in
WSMO.

OWL-S doesn’t provide any mechanism to address the
problem of the different types of web services, whereas
WSML by the definition of mediators assumes the fact that
web services can be heterogeneous.

The definition of mediators in WSMO motivates that
investigate more on how OWL-S solves the compatibility
problem. OWL-S provides the web service and the users with
information on how to find already existent mediators or on
how to generate them by using web service composition.

A clear disadvantage of OWL-S is the obligation of defining
both the web service functionality and the user requirements
on the web service in the service profile. WSMO separates
both into two different ontologies (Web Service and Goals)

In terms of composition, OWL-S provides a well-defined
choreography and an automatic orchestration, whereas WSMO
has an automatic, half-automatic and fixed composition. Even
if choreography and orchestration are also provided, the
support for them is in OWL-S better.

Grounding is comparable, as both languages provide the
standard assignment of classes to WSDL data types, and both
predicate for a separation of the web service description from
its interface implementation. The fact that OWL-S supports
expressions like XSLT transformations or inference rules in
languages like KIF (Knowledge Interface Format) or SWRL
(Semantic Web Rule Language), that allows for re-using the
already existing expressions without having to re-formulate
them.

With WSMO several process flows can be specified for the
same service, enabling the execution of the same service in
different ways (indispensable requirement in pervasive
environments or in situations where load balancing is required)

To summarize the WSMO vs OWL-S comparison I will
provide a similarity and two differences:

• Both OWL-S and WSMO rely on the usage of
ontologies as core components to enable the semantic
web services

• OWL-S promotes a specializing/generalizing strategy,
where atomic processes can be compounded into more
complex processes

• WSMO strives for enabling the integration of non-
dependant, separately developed, isolated solutions by
means of mediators.

VI. CONCLUSION AND FINAL THOUGHT

The introduction of the semantic web services brings to the
development community the big challenge of the ontology
languages. To make use of their huge potential, a lot of efforts
are still required to make people confident with the new
fashion of web services.

WSDL-S, OWL-S and WSMO have already laid the
cornerstone, but the lack of user friendly tools for the creation
of SWS is still uncovered. Only if the average-user gets on
board and the right expectations are set, the SWS will be
accepted.

When a new technology emerges, it is crucial to set the right
expectations. Otherwise, as several times demonstrated in the
history of the AI, two weaknesses might lead it to break down:
technology insiders being over-promising, and outsiders being
over-optimistic (as stated Henry Thompson in the presentation
of the XML Meta-Architecture)

Along the Artificial Intelligence History, a lot of efforts
have been put in designing expressive notations to tackle the
problem of knowledge representation. But those efforts result
to be useless when taking a step ahead and trying to exploit the
represented knowledge. To put it in other words, it is proven
that designing an approach to knowledge representation
without designing first an inference engine for this knowledge
can be a waste of time.

Actually, we have been facing and are still facing the trade-
off between using 1st order predicate logic and thereby getting
a variety of well-understood inference engines, or using
something user-friendlier and more expressive, but we are not
able to exploit. The same thought can be applied to upcoming
semantic web services and the emerging technologies melting
pot.

REFERENCES

[1] Web Sevices Definition Language WSDL available at

http://www.w3.org/TR/wsdl
[2] Web Services Modeling Ontology available at

http://www.wsmo.org

[3] Web Service Execution Environment (WSMX) Available at
http://www.w3.org/Submission/WSMX/

[4] Web Services Modeling Language specified at
http://www.wsmo.org/TR/d16/d16.1/v0.21/#part:variants

[5] Bussler, Christoph and Fensel, Dieter. 1st F2F meeting SDK cluster
working group on Semantic Web Services. Wiesbaden, Germany,
March 2004

[6] Domingue, John. Ontolog Semantic Web Service Ontology Standard
Panel. The Open University, October 2005

[7] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,
McIlraith, S.,Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin,
E., Srinivasan, N., Sycara, K.: Owl-s: Semantic markup for web
services. Technical report, http://www.w3.org/Submission/OWL-S/
(2004)

State of the art 9

[8] Knowledge Interchange Format, available at
http://logic.stanford.edu/kif/kif.html

[9] Semantic Web Rule Language combining OWL and RuleML, available
at http://www.w3.org/Submission/SWRL/

[10] Daskalova, H., Atanasova, T.: Semantic web services - where we are
and where weare going. Technical report, Institute of Information
Technologies - BAS, http://www.infrawebs-eu.org/get_file.php?id=277
(2005)

[11] de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller,
U., Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren,
E., Polleres, A., Roman,D., Scicluna, J., Stollberg, M.: Web service
modeling ontology (wsmo). Technical report,
http://www.w3.org/Submission/WSMO/ (2005)

[12] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth,
A.,Verma, K.: Web service semantics - wsdl-s. Technical report (2005)

