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Abstract— Starting with a brief summary of the Markov 

network's article authored by Pedro Domingos, this work 

subjects it to a strengths and weaknesses analysis. After 

that, the bibliographic references are checked. 

The final part focuses on an outlook to newer works 

published in these research areas. 

 

I. SUMMARY 

edro starts this work introducing the two core challenges of 

the machinery learning and the frameworks to address 

them: probability for dealing with uncertainty and first-

order logic for dealing with complexity.  

After this introduction the goal setting statement comes: a 

combined approach where machine learning and inference is 

possible. Following the goal setting, a briefly review of 

historical approaches up to the moment that combine a 

probabilistic graphical model with a subset of first-order logic: 

stochastic logic programs, probabilistic relational models, 

Bayesian logic programs, relational dependency networks. 

The Markov logic is introduced as a model with two key-

features: 

1. Conceptually simple providing the graphical  models’ 

full expressiveness   

2. Remains well-defined in many infinite domains. 

It is the result of extending the 1
st
-order logic with the 

attachment of weights to formulas that are viewed as template 

for constructing Markov networks. Should weights be infinite, 

then the Markov logic would be equivalent to 1
st
-order logic 

[4]. 

Different from statistical learners, the Markov logic doesn’t 

assume that data are independent and identically distributed. It 

leverages the power of 1
st
 order logic to represent 

dependencies between objects. 

 

In order to explain the Markov logic model, the author starts 

describing the two components separately: 

A. Markov Network 

Is defined as a model for the joint distribution of a set of 

variables  

 
Undirected graphical models and set of potential functions 

The potential functions are defined over cliques: 

 

 

Where cx  is the state of the kth clique. Z is known as the 

partition function, given by: 

 

 

 

 

 For example for the objects Smoking and cancer the potential 

functions look like: 

SMOKING CANCER   Ф(S,C) 

FALSE FALSE      4.5 

FALSE TRUE      4.5 

TRUE FALSE      2.7 

TRUE TRUE      4.5 

 

And the undirected graphical model as follows: 

 

 

 
A Markow network can also be represented as a log-linear 

model: 

 

 

 

The  )(xf i  is called feature and iw the weight for this feature 

Continuing with the smoking sample: 

 
 

B. First-Order logic 

Pedro introduces the concept of 1st-order knowledge base as a 

set of sentences and formulas in first order logic, and 

introduces other basic concepts the 1
st
-order logic builds upon. 

A formula consists of following elements: constants (the 

domain objects), variables (ranges over objects in the domain), 

functions (mappings from tuples of objects to objects) and 

predicates (relations between objects in the domain or objects 

attributes).  

A term is defined as an expression representing an object in 

the domain. 

Literals are defined like a predicate or its negation. A clause is 

defined as a disjunction of literals. 

Grounding is known as the replacement of all variables by 

constants. 

World (model, interpretation) is the assignment of truth values 

to all ground predicates 

A formula is satisfiable iff there exists at least one world in 

which it is true. 

The basic inference problem in first-order logic is to determine 

whether a knowledge base KB entails a formula F, i.e., if F is 

true in all worlds where KB is true (denoted by KB |= F). 

Formulas are typically converted to a clausal form 
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(conjunctive normal form), which is a conjunction of clauses, 

being a disjunction of literals. 

The inference in first-order logic is only semidecidable. 

Because of this, knowledge bases are often constructed using a 

restricted subset of first-order logic with more desirable 

properties. The Horn clauses, constructed containing the most 

positive literal are the most widely-spread approach. 

 

C. Markov Logic 

A logical KB is a set of hard constraints on the set of possible 

worlds: Let’s make them soft constraints: When a world 

violates a formula, It becomes less probable, not impossible 

Each formula is given a weight to indicate how strong the 

represented constraint is: The higher weight, the stronger the 

constraint 

 

A Markov Logic Network (MLN) is a set of pairs (F, w) where 

• F is a formula in first-order logic 

• w is a real number 

Together with a set of constants, it defines a Markov network 

with 

• One node for each grounding of each predicate in the 

MLN 

• One feature for each grounding of each formula F in 

the MLN, with the corresponding weight w 

 

Coming back to the smoke and friendship sample: an MLN 

containing the formulas  

 

 

 

 

Smoking causes cancer and friends have similar smoking 

habits applied to the constants Anna and Bob (or A and B for 

short) yields the ground Markov network in Figure 1.  

Notice that, although the two formulas above are false as 

universally quantified logical statements, as weighted features 

of an MLN they capture valid statistical regularities, and in 

fact represent a standard social network model. 

 
 

 

 

D. Inference 

 

A basic inference task is finding the most probable state of the 

world given some evidence. (This is known as MAP inference 

in the Markov network literature, and MPE inference in the 

Bayesian network literature.) 

 

 

This can be done using any weighted satisfiability solver, and 

(remarkably) need not be more expensive than standard logical 

inference by model checking 

 

 

 

 

 

 

 

 

This is just the weighted MaxSAT probable. Use weighted 

SAT solver (e.g., MaxWalkSAT, which is potentially faster 

than logical inference: 

 

for i ← 1 to max-tries do 

    solution = random truth assignment 

    for j ← 1 to max-flips do 

        if all clauses satisfied then 

            return solution 

        c ← random unsatisfied clause 

        with probability p 

            flip a random variable in c 

        else 

            flip variable in c that maximizes 

                number of satisfied clauses 

return failure 

 

One problem with this approach is that it requires 

propositionalizing the domain (i.e., grounding all atoms and 

clauses in all possible ways), which consumes memory 

exponential in the arity of the clauses. The author’s research 

group has overcome this by developing LazySAT, a lazy 

version of MaxWalkSAT which grounds atoms and clauses 

only as needed: 

 

for i ← 1 to max tries do 

  active atoms ← atoms in clauses not satisfied by DB 

  active clauses ← clauses activated by active atoms 

  soln ← a random truth assignment to active atoms 

  cost ← sum of weights of unsatisfied clauses in soln 

  for i ← 1 to max flips do 

     if cost ≤ target then 

         return “Success, solution is”, soln 

     end if 

     c ← a randomly chosen unsatisfied clause 

     if Uniform(0,1) < p then 

         vf ← a randomly chosen variable from c 

     else 

         for each variable v in c do 

            compute DeltaCost(v), using weighted KB if v doesn’t  

            belong to active atoms 

           end for 

           vf ← v with lowest DeltaCost(v) 

       end if 

        if vf doesn’t belong to active atoms then 
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           add vf to active atoms 

           add clauses activated by vf to active clauses 

    end if 

    soln ← soln with vf flipped 

     cost ← cost + DeltaCost(vf ) 

   end for 

end for 

return “Failure, best assignment is”, best soln found 

 

E. Learning 

 

For the learning we need to starting assumptions: data is a 

relational database and the world is closed (otherwise EM) 

There are two complementary approaches: learning parameters 

(weights) or learning structure (formulas) 

 

1) Generative weight learning  

 

This relational database consists of one or more “possible 

worlds” that form our training examples. Note that we can 

learn to generalize from even a single example because the 

clause weights are shared across their many respective  

groundings. We assume that the set of constants of each type is 

known. We also make a closed-world assumption: all ground 

atoms not in the database are false. This assumption can be 

removed by using an EM algorithm to learn from the resulting 

incomplete data. The gradient of the log-likelihood with 

respect to the weights is  

 

 

 

 

where the sum is over all possible databases x′, and Pw(X = x′) 

is P(X =x′) computed using the current weight vector w = (w1, 

. . . ,wi, . . .). In other words, the ith component of the gradient 

is simply the difference between the number of true 

groundings of the ith formula in the data and its expectation 

according to the current model. The problem is the 

computational cost, because it requires inference at each step 

(very slow). 

 

2) Discriminative Weight Learning 

 

Maximize conditional likelihood of query (y) given evidence 

(x) 

 

 

 

 

 

Approximate expected counts with: 

counts in MAP state of y given x (with MaxWalkSAT) 

with MC-SAT 

 

3) Structure Learning 

 

Generalizes feature induction in Markov nets. 

Any inductive logic programming approach can be used, but 

the goal is to induce any clauses, not just Horn ones. 

The evaluation function is intended to be the likelihood 

Requires learning weights for each candidate, but it turns out 

not to be bottleneck, unlike the clause grounding counting. 

To overcome the real bottleneck the counting of clause 

groundings presents, sub-sampling can be introduced 

 

F. Application 

The application spectrum of the Markov logic is very wide: 

information extraction (very successfully applied in biology), 

integration of probabilistic predictions. In the fields of web 

mining, activity recognition, natural language processing, 

computational biology, robot mapping and navigation, 

game playing and others are under way.  

 

II. PLUSSES 

 

The first strong point of this article is the schematic and very 

structured way Pedro introduced the two challenges of the AI, 

the existing approaches and how the Markov Logic combines 

the best of two disciplines to address the challenges. 

Following this brilliant framing of the problematic, Pedro 

starts by explaining the fundamentals and also the limitations 

of both 1
st
-order logic and Markov networks, prior to deep 

diving into the Markov logic. This also speaks for the 

structured thinking of the author, as well as makes the reading 

and understanding of the article much easier. 

The section regarding application areas was very adequate to 

show the practical applicability of the Markov Logic, rather 

than leaving it in a theoretical world. 

Very positive was the last section, where Pedro provides an 

outlook about current and future research directions, intended 

somehow to spark the reader’s interest. 

III. DELTAS 

 

When the author gets into lower algorithms details, not all the 

required information is given. This is always a trade-off 

between making the article too long and repeating things or 

just providing references, but my point refers rather to the 

language used, sometimes too cryptic. 

Another aspect I would rather keep out of this article is the 

exaggerated of the research group of the author with a 

complete section about the self-developed Alchemy system 

(from my point of view out of place). 

 

IV. BIBLIOGRAPHIC REFERENCES CHECK 

 

First of all a few words about the usage of citations: the author 

introduces the challenges, the different approaches up to the 

moment (each one given a reference to a core work), to get 

down later to the Markov Logic. 
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The 1
st
-order logic part, as well as the Markov network is 

provided with the necessary references (to works where the 

fundamentals are precisely explained). 

When introducing the Markov Logic, the author quotes 

previous own works in this area (which allow for briefness, 

instead of overloading the text), but not leaving details 

unexplained. 

The two more complex sections, which are inference and 

learning in MLN, are copiously provided with the references 

to sources where the algorithms the author is basing his finding 

on, are explained in detail. 

When Pedro writes about the MLN applications, uses quite a 

few references to current/on-going project, which conveys an 

idea of the state-of-the-art of the industrial applicability of 

such learning models. 

All references are appropriated at the publication time, and 

correctly placed in the article. Moreover, we could classify the 

references into following groups: 

• References about fundamentals (provided when 

introducing concepts) 

• References related to current research areas and state-

of-the-art 

• References intended to extend in further level of 

detail the explanation of a given topic. 

 

V. SUBSEQUENT WORKS RELATED TO MLN 

 

Since the publication of this article (2006), there have been a 

lot of researches around MLN, mainly driven by Pedro 

Domingos’ research group. 

I will briefly summarize the core articles published 

subsequently to the article we are analyzing: 

 

1) Entity resolution with Markov Logic [1] 

This paper proposes a unifying framework for entity 

resolution. The team shows how a small number of axioms in 

Markov logic capture the essential features of many different 

approaches to this problem, in particular non-i.i.d. ones, as 

well as the original Fellegi-Sunter model. Experiments on two 

citation databases evaluate the contributions of these 

approaches, and illustrate how Markov logic enables us to 

easily build a sophisticated entity resolution system. 

 

2) Recursive random fields and MLN [2]: 

Recursive random fields overcome some salient limitations of 

Markov logic. While MLNs only model uncertainty over 

conjunctions and universal quantifiers, RRFs also model 

uncertainty over disjunctions and existentials, and thus achieve 

a deeper integration of logic and probability. Inference in 

RRFs can be carried out using Gibbs sampling and iterated 

conditional modes, and weights can be learned using a variant 

of the back-propagation algorithm. 

The main disadvantage of RRFs relative to MLNs is reduced 

understandability. One possibility is to extract MLNs from 

RRFs with techniques similar to those used to extract 

propositional theories from KBANN models. Another 

important problem for future work is scalability. Here we plan 

to adapt many of the MLN optimizations to RRFs. Most 

importantly, we intend to apply RRFs to real datasets to better 

understand how they work in practice, and to see if their 

greater representational power yields better models. 

 

3) Statistical Predicate Invention [3] 

The research group proposed statistical predicate invention, 

the discovery of new concepts, properties and relations in 

structured data, as a key problem for statistical relational 

learning. They then introduced MRC, an approach to SPI 

based on second-order Markov logic. 

MRC forms multiple relational clusterings of the symbols in 

the data and iteratively refines them. Empirical comparisons 

with a Markov logic structure learning system and a state-of-

the-art relational clustering system on four datasets show the 

promise of their model. 

They speculate that all relational structure learning can be 

accomplished with SPI alone. Traditional relational structure 

learning approaches like ILP build formulas by incrementally 

adding predicates that share variables with existing predicates. 

The dependencies these formulas represent can also be 

captured by inventing new predicates. For example, consider a 

formula that states that if two people are friends, either both 

smoke or neither does 

SPI can compactly represent this using two clusters, one 

containing friends who smoke, and one containing friends who 

do not. The model we introduced in this paper represents a 

first step in this 

 

4) Markov logic in infinite domains [4] 

In this paper, the Domingos and Singla extended the semantics 

of Markov logic to infinite domains using the theory of Gibbs 

measures. They gave sufficient conditions for the existence 

and uniqueness of a measure consistent with the local 

potentials defined by an MLN. They also described the 

structure of the set of consistent measures when it is not a 

singleton, and showed how the problem of satisfiability can be 

cast in terms of MLN measures. Directions for future work 

include designing lifted inference and learning algorithms for 

infinite MLNs, deriving alternative conditions for existence 

and uniqueness, analyzing the structure of consistent measure 

sets in more detail, extending the theory to non-Herbrand 

interpretations and recursive random fields, and studying 

interesting special cases of infinite MLNs. 

 

5) Efficient Weight Learning for MLN [5] 

Weight learning for Markov logic networks can be extremely 

ill-conditioned, making simple gradient descent-style 

algorithms very slow to converge. In this paper we studied a 

number of more sophisticated alternatives, of which the best-

performing one is preconditioned scaled conjugate gradient. 

This can be attributed to its effective use of second-order 

information. However, the simple heuristic of dividing the 

learning rate by the true clause counts for each weight can 

sometimes give very good results. Using one of these methods 

instead of gradient descent can yield a much better model in 

less time. 
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